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Contracts

Work performed by LG Fuel Cell
Systems under DOE contracts.

DE-FE0012077: SECA Coal-Based
Systems LGFCS

DE-FE0023337:Improved Reliability of
SOFC Systems

DE-FE0026098: Advanced Materials and
Manufacturing
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Performance Improvement

Cost Reduction

Durability

Block Testing

Advanced Materials and Manufacturing
O Summary
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Outline

0 Performance Improvement

Fuel cell system operation strategy

ASR improvement for longer service life
and cost reduction
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Plant Operation Options Based on Stack Performance
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Initial ASR and ASR degradation rate are key metrics for benchmarking
cell technology

System design must be able to operate over a wide range of ASR

(starting to end-of-life) while maintaining specified stack temperature

range

Operation based on current technology developed to date
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Plant Operation Options - Constant Power/Heat Release
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ASR Reduction Achievements

0 EIS Tech. provide ASR benefit (0.04~0.05Y ) compared with
IST Tech.

Initial Temperature sweep with Different Tech.
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Additional ASR Reduction Achieved using
Nickelate Cathodes

0 Candidate nickelate cathodes have ~0.02 Ohm cm? lower cell ASR
at 860C, 4bar

4bar
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Current Status for Nickelates 8

0 Difficult to achieve complete phase stability

0 But, still promising durability even with multiple
phases present

0 Recent further improvements in degree of phase
Instability

Nickelate comp05|te Il (PCT238 A2) Elapsed time : 7200hr 0.90 | fuel, wet Air, 850C L
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0 Cost reduction

Cell and stack design changes
Current density

System simplification for cost reduction
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Cell & Tube Design Options for ASR

Reduction & Power Increase

0 Smaller PIC dimension has
lower ASR contribution
0 Power increased using
longer tube (~100W/tube)
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In-Block Reforming Enables Higher Power Density

0 In Block Reforming reduces stack DT to allow higher power density for the
same air flow

0 Single tube mapping tests showed no evidence of performance loss with
various levels of IBR
0 Low ASR enables higher current density while maintaining efficiency
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Anode Protection System Simplification for Cost

Reduction
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Operational scheme results in anode redox
A minimal number of redox cycles required for product

O costreduction by 75% from early design of Anode Protection Unit

Early system designs utilized a
separate subsystem for system
scale APG generation

Catalytic Anode Protection
Gas System

Pellet Redox
Exposure to air for 2 hrs at 900C

5 cycles
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MnOx Accumulation, Redistribution Status of
Understanding, Solutions

0 Mn enrichment greater at low
temperature
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MnOx Accumulation, Redistribution Status of

Understanding, Solutions

0 Mn enrichment greater at low
temperature

0 MnOx source appears to be from
throughout the cathode and CCC
layers. No significant localized
LSM stochiometry change

s Even 5% A-site deficient CCC
has free-MnOx as-fabricated.
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MnOx Accumulation, Redistribution Status of
Understanding, Solutions

0 Localized at interface (driving
force?)

s Overpotential and/or pO2
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